Accounts of Materials & Surface Research

Nanostructural Control of Crystalline Cellulose Oligomers through Polymerization-Induced Self-Assembly under Macromolecular Crowding Conditions

Yuuki Hata,¹ Toshiki Sawada,^{1,2} and Takeshi Serizawa^{1,*}

 ¹Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
 ²Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan serizawa@polymer.titech.ac.jp

(PISA) **Polymerization-induced** self-assembly that synthesizes amphiphilic polymers through polymerization for in situ self-assembly of the polymers into unique nanostructures in the reaction media is an emerging and facile strategy to control polymeric nanostructures. This review outlines our recent findings in PISA of crystalline cellulose oligomers, which are synthesized by enzymatic reactions under macromolecular crowding conditions. The reaction media are transformed into hydrogels composed of crystalline nanoribbon networks. We propose the formation mechanism for nanoribbon network hydrogels and apply the concept to the preparation of double network gels with excellent mechanical properties.

Hydrogel

Keyword: Polymerization-Induced Self-Assembly, Crystalline Cellulose Oligomer, Macromolecular Crowding, Hydrogel, Double Network Gel

Yuuki Hata received his BS (2014) and MS (2016) degree from Tokyo Institute of Technology under the supervision of Professor Takeshi Serizawa. He is currently carrying out his doctoral studies in the same group.

Toshiki Sawada received his PhD in biochemistry from Tokyo Institute of Technology in 2010 under the supervision of Professor Hisakazu Mihara. Currently, he works as an Assistant Professor with Professor Takeshi Serizawa, first at The University of Tokyo in 2010 and then at Tokyo Institute of Technology from 2012. He is a PRESTO researcher of Japan Science and Technology Agency as a concurrent position from 2017.

Takeshi Serizawa received his PhD in biotechnology from Tokyo Institute of Technology in 1996 under the supervision of Professor Toshinori Sato, who is now a Professor at Keio University. From 1996 to 2003, he worked with Professor Mitsuru Akashi as an Assistant Professor and then as an Associate Professor at Kagoshima University. He moved to The University of Tokyo in 2004 and began his own research group. He has worked at Tokyo Institute of Technology, since 2011 as a full Professor.

高分子クラウディング環境下での重合誘起自己組織化による 結晶性セルロースオリゴマーのナノ構造制御

秦 裕樹¹・澤田敏樹¹²・芹澤 武¹* ¹ 東京工業大学 物質理工学院 応用化学系 ² 科学技術振興機構 さきがけ

1. はじめに

溶液中における分子の自己組織化は、低エ ネルギーかつ簡便なプロセスで構造制御され たナノ構造体を構築する魅力的な手法である。 一般に分子の自己組織化は、分子をあらかじ め合成した後に所定の溶媒中で自己組織化 させる。一方で、重合反応により生成した分子 をその場で自己組織化させる、いわゆる重合 誘起自己組織化 (Polymerization-Induced Self-Assembly, PISA) がより簡便な手法として 近年、注目を集めている^{1,2)}。例えば、重合す ると溶媒に不溶化するモノマーを溶解した高 分子鎖から伸長させると、生成したブロック共 重合体が球状 3-5)、ワーム状 3-5)、ベシクル状 ³⁻⁵⁾、クラゲ状⁴⁾、多区画ベクシル状³⁾などの多 様なナノ構造体にその場で自己組織化するこ とが報告されている。また、合成高分子のみな らず、生体高分子にも PISA は適用されている。 例えば、酵素反応により生成されるペプチド や多糖のPISAでは、天然には見られないナノ 構造体を人工的に構築できる 6-9)。このように PISA は、新たな構造特性や機能をもつナノ構 造体を自在構築する潜在性を有している。

高分子クラウディング環境とは、細胞内のよ うに様々な分子が極めて高濃度で存在してい る状態を指し、この高分子クラウディング環境 が分子の自己組織化に多大な影響を及ぼす ことが広く知られている¹⁰⁻¹²⁾。これまでに、水溶 性高分子の高濃度水溶液により高分子クラウ ディング環境を構築し、様々な物理・化学的 現象が見出されてきた。例えば、高分子クラウ ディング環境下では溶液粘度が増大するため、 溶解した他の分子やコロイド粒子の拡散速度 が低下する¹³⁾。また、クラウディング高分子が 示す排除体積効果は、溶解した他のコロイド 粒子が侵入できない領域をつくり出すため、 その結果としてコロイド粒子間に枯渇斥力を 生じさせ、コロイド粒子の凝集を過渡的に抑制 する¹⁴⁾。これらのことから、高分子クラウディン グ環境は分子の自己組織化を制御する手法 として有用であることが期待できる。しかしなが ら、材料創製の観点からはほとんど利用され てこなかった。

筆者らは最近、高分子クラウディング環境下 での酵素反応に基づいてセルロースの PISA を実施すると、セルロースオリゴマーからなる 結晶性のナノリボンネットワークが生成され、 ユニークなハイドロゲルとなることを見出した。 そこで本稿では、その概要、生成メカニズム、 応用例について紹介する。

2. セルロースの重合誘起自己組織化による ナノ構造体の構築

トップダウン手法により調製される、天然由 来のセルロースナノファイバーやセルロースナ ノ結晶(いわゆるナノセルロース)は、化学的 な安定性や高い力学強度などの優れた特長 をもつため、機能性材料の素材として有望で ある¹⁵⁻¹⁷⁾。しかしながら、これら天然由来のナノ セルロースの形態は、繊維あるいはロッド状に 限定され、また、機能基の導入には一般に煩 雑な反応プロセスが必要である。

一方、酵素を触媒としたセルロースの合成反応に基づく PISA は、新奇なセルロース系ナノ 構造体を高純度でボトムアップ構築する有用な手法である⁶⁻⁸⁾。例えば、水溶性セルロース オリゴマーの加リン酸分解酵素であるセロデキストリンホスホリラーゼ(CDP)の逆反応を利用 すると、プライマーであるグルコースからモノマ ーである α-グルコース 1-リン酸(αG1P)が繰り返し脱リン酸縮合する重合反応が進行する (Figure 1a)^{18,19)}。この際、セルロース分子鎖の

Figure 1. The nanosheet composed of cellulose oligomers formed via PISA. a) Synthetic scheme of cellulose oligomers by the CDP-catalyzed reaction. b) Photograph of the reaction medium. c) Transmission electron microscopy image and schematic illustration of the nanosheet.

重合度が 7 以上となると水に不溶化するため 200、その場で自己組織化してシート状のナノ構 造体が沈殿物として得られる(Figure 1b,c)。こ のナノシートは平均重合度 10 程度のセルロー スオリゴマーからなり、分子鎖が膜厚方向に逆 平行に配列したセルロース II 型とよばれるラメ ラ結晶を形成している。

酵素反応の特長の一つに高い基質特異性 があるが、興味深いことに Clostridium thermocellum YM4 由来の CDP は、グルコー スのみならず、アノマー位に置換基をもつグ ルコース誘導体もまた基質として認識する。そ のため筆者らのグループでは、様々なグルコ ース誘導体をプライマーとして利用することに より、特徴的な形態や表面に機能基をもつナ ノ構造体が構築できることを見出している²¹⁻²⁵⁾。 このように、CDP を利用したセルロースオリゴ マーあるいはその誘導体の PISA が新奇なセ ルロース系ナノ構造体を構築する手法として 有用であることが明らかになりつつある。

3. 高分子クラウディング環境下でのナノリボ ンネットワーク形成

セルロースの PISA において、その自己組織 化プロセスを変調できれば、ナノ構造体の形 態や機能を制御できる可能性がある。しかし ながら、通常の条件下では、生成物は凝集、 沈澱するため、高次構造へのさらなる発達は 阻害されている。筆者らは、Figure 1 の PISA を高分子クラウディング環境下で行えば、拡 散速度の低下や枯渇斥力により前駆体(ここ では、コロイド状のナノシート)の凝集を抑制し、 構造形成が促進されるものと考えた。この仮 説を検証するために、デキストラン(Dex)、ポリ エチレングリコール(PEG)、ポリビニルピロリド ン(PVP)をクラウディング高分子として高濃度 水溶液(10%(w/v))を調製し、それらの水溶液 中で CDP を触媒とするセルロースの PISA を 検討した。その結果、生成物は沈殿することな くネットワークを生成し、反応液はゲル化した (Figure 2a, inset)²⁶⁾°

ハイドロゲル中のクラウディング高分子を精 製操作により除去し、凍結乾燥して走査型電 子顕微鏡(SEM)観察した結果、分岐のないリ ボン状のナノ構造体からなるよく発達したネッ

Figure 2. The nanoribbon network composed of cellulose oligomers formed via PISA under macromolecular crowding conditions. a) SEM image of the xerogel prepared in the presence of Dex. Inset shows a photograph of the hydrogel. b) Schematic illustration of the nanoribbon. Reproduced in part with permission from Y. Hata *et al.*, *ACS Macro Lett.* **2017**, 6, 165, American Chemical Society.

トワークが観察された(Figure 2a)。詳細な構 造解析の結果、このナノリボンは平均重合度9 程度のセルロースオリゴマーからなり、それら が II 型結晶を形成していることがわかった。さ らに、原子間力顕微鏡観察からナノリボンの 厚さはおよそ 5.5 nm であった。この値は重合 度9のセルロースオリゴマーが II 型結晶を形 成した際の分子鎖長(4.7 nm)とよく一致する ことから、分子鎖がナノリボンの膜厚方向に垂 直に逆平行配列していることが示唆された (Figure 2b)。長さ以外のナノリボンの構造的 特徴は、非高分子クラウディング環境下で合 成したナノシート(Figure 1)と酷似していること から、ナノシート状の前駆体が凝集することな く長軸方向に異方的に生長してナノリボンとな り、それらが物理的に絡み合うことでハイドロ ゲルを形成したことが推察された。

4. 構造発達ならびにマクロな構造均一性の 要因

高分子クラウディング環境下でセルロースオ リゴマーが構造発達する要因として、溶液粘 度が増大することにより、拡散速度が低下する (Figure 3a)¹³⁾ことや、高分子の排除体積効 果により生じる枯渇斥力(Figure 3b)¹⁴⁾により、 コロイド状前駆体の凝集が速度論的に抑制さ れることが考えられる。そこで、前者の効果を 明確にするために、溶液粘度が異なる高分子

Figure 3. Possible mechanisms for the suppression of aggregation of the precursors (colloidal nanosheets) under macromolecular crowding conditions. Schematic illustrations of a decrease in the diffusion rate of the nanosheets (a) and depletion repulsion between the nanosheets (b).

も、スクロースとエピクロロヒドリンの共重合体 である Ficoll は多分岐構造をもつため、比較 的低粘度の高分子クラウディング環境を調製 できる 10,13,28 。実際に、同濃度(10%(w/v))の Dex または Ficoll を含む酵素反応液の粘度を 測定したところ、それぞれ 8.4 ± 0.2 mPa s 及び 2.8 ± 0.1 mPa s であり、確かに Ficoll を用いる ことで低粘度の高分子クラウディング環境を構 築できた。

クラウディング環境下で PISA を実施し、ゲル 生成への影響を評価した²⁷⁾。高分子クラウディ

ングの調製に用いられる水溶性高分子の中で

そこで、Ficoll 水溶液中でセルロースの PISA を実施した。その結果、他の水溶性高分子の 場合と同様にナノリボンネットワークからなるハ イドロゲルが生成された。しかしながら、ハイド ロゲルを光学顕微鏡観察した結果、Ficoll の 場合にはサブ mm スケールの不均一性が観 察されたのに対し、Dex の場合には相対的に 均一であり、マクロなスケールでの均一性が異 なることがわかった(Figure 4)。低粘度下でマ クロな不均一性を生じる理由は明らかではな いが、より均一なナノリボンネットワークが生成 されるためには、高い溶液粘度が必要である ことが示唆された。一方で、枯渇斥力もナノリ ボンネットワークの均一性に寄与しているもの と考えられるが、現状では両者の寄与の内訳 は明らかとなっていない。今後、クラウディング 高分子の排除体積と、ハイドロゲルの生成や 各スケールでの構造均一性との相関を評価 することで、両者の寄与が明らかにできるもの と考えている。

ナノリボンの形態制御の観点から SEM 写真 を比較した結果、クラウディング高分子の種類 によってナノリボンの幅や長さが異なることが

Figure 4. Optical microscopy images of the hydrogels prepared in the presence of Ficoll (a) and Dex (b). Insets represent the binary images. Reproduced in part with permission from Y. Hata *et al.*, *Polym. J.* **2017**, *49*, 575, Springer Nature.

Figure 5. SEM images of the hydrogels prepared in the presence of Dex (a), PEG (b), PVP (c), and FicoII (d). Reproduced in part with permission from Y. Hata *et al.*, *ACS Macro Lett.* **2017**, *6*, 165, American Chemical Society and Y. Hata *et al.*, *Polym. J.* **2017**, *49*, 575, Springer Nature.

わかった(Figure 5)。Dex や Ficoll の場合、ほ とんどのナノリボンの幅が 200-300 nm であり、 また長さは 10 µm 以上に達するのに対し、 PEG や PVP の場合には、200 nm 以下の幅を もつナノリボンが多く観察され、また長さは最 大でも 3 µm 程度であった(なお、SEM ではゲ ルの割断面を観察しているため、ナノリボンの 長さを過小評価している可能性がある)。加え て、Dex や Ficoll の場合の方がナノリボンの直 線性が比較的高く、より剛直である様子が観 察された。これはおそらく、ナノリボンの幅が広 いため、結晶サイズが大きいことが寄与してい るものと考えられる。

このように、Dex や Ficoll により調製した高分 子クラウディング環境下における PISA の方が、 よく発達したナノリボンが生成されることが明ら かとなった。これらのクラウディング高分子の 場合には、結晶核が生成する頻度が低下し、 結果としてナノリボン一つ一つがよく発達した と推察されるが、現状ではこれら違いが生じる 詳細な機構は明らかとなっていない。想像の 域を超えないが、Dex や Ficoll はセルロースと 同様に糖骨格を有するため、セルロースオリ ゴマーと相互作用して結晶核の生成を抑制し ているのかもしれない。いずれにしても、クラウ ディング高分子の種類によって、セルロースの PISA により生成するナノリボンの形態を制御 できる可能性が示唆された。

5. ダブルネットワークゲルへの展開

近年、ゲルの力学物性を向上する戦略として、特性の異なる二つのネットワークからなる ダブルネットワーク(DN)ゲルが注目されている²⁹⁾。筆者らはセルロースオリゴマーからなる ナノリボンネットワークを成分の一つとする DN ゲルの構築について検討した。原理的には、 クラウディング高分子を酵素反応後に架橋す ることにより DN ゲルをなることが期待される。 そこで、酵素反応温度の 60 ℃ではゾルであ りながら、低温では物理架橋してゲル化する ゼラチンをクラウディング高分子に適用した。

8% (w/v)のゼラチン水溶液中でセルロース の PISA を実施した結果、他のクラウディング 高分子の場合と同様に、ナノリボンネットワー クからなるハイドロゲルが生成された (Figure 6a)²⁶⁾。すなわち、ゼラチンもセルロースの PISA の制御に利用できることがわかった。そ

Figure 6. DN gels composed of nanoribbon and gelatin networks. a) SEM image of the nanoribbon network prepared in the presence of gelatin. b) Photograph of the DN gel. Compressive stress-strain curves (c) and Young's moduli (d) of the hydrogel. Reproduced in part with permission from Y. Hata *et al.*, *ACS Macro Lett.* **2017**, *6*, 165, American Chemical Society.

の後、反応液を室温まで徐冷することでゼラ チンとの DN ゲルを構築した(Figure 6b)。圧 縮試験によりゲルの力学物性を評価した結果、 DN ゲルの弾性率は 10.1±1.1 kPa であり、こ の値はナノリボン単独のゲル(1.8±0.7 kPa) やゼラチン単独のゲル(1.7±1.0 kPa)の弾性 率の和のおよそ 3 倍であった(Figure 6c,d)。 従って、温度に応答してゾルーゲル転移する ゼラチンをクラウディング高分子として用いるこ とで、力学物性に優れるセルロース系 DN ゲ ルを構築できることが明らかとなった。筆者ら の知る限り、二つの成分が物理架橋ネットワー クからなるこのような DN ゲルはほとんど報告さ れていない^{30,31}。

本 DN ゲルの弾性率の増大は、化学架橋を 施したこれまでの DN ゲルと同様の機構で説 明できる。龔らが報告した代表的なDNゲル³²⁾ は、剛直で脆いポリ(2-アクリルアミド-2-メチ ルプロパンスルホン酸) (PAMPS) のネットワー クと柔軟で伸びるポリアクリルアミド (PAAm)の ネットワークからなり、変形時には脆い PAMPS が先に破壊される(犠牲となる)ことで強靭性 を発揮することが明らかにされている²⁹⁾。本 DN ゲルは結晶性セルロースオリゴマーででき た脆いナノリボンネットワークと柔軟なゼラチン ネットワークからなることから、変形時にはナノ リボンネットワークが破壊されることで力学物 性が向上していると推察される。興味深いこと に、本 DN ゲルの弾性率は単独成分のゲルの 場合と比較して大幅に高く、これは PAMPS/PAAm 系 DN ゲルの弾性率が PAMPS 単独と同程度であること32)と異なった。 この結果は、ナノリボンネットワークとゼラチン ネットワークが小さなひずみ下においても物理 的に相互作用していることを示唆している。

本研究において力学物性評価に用いた圧 縮試験では、ナノリボン単独のゲルが明確な 破断点を示さなかったため、靭性の向上を正 確に評価することはできていないが、応力-ひ ずみ曲線(Figure 6c)から求めた破壊エネル ギーは少なくとも3倍以上に向上していた。今 後、力学物性や変形時の構造変化を詳細に 評価することで、剛性や靭性へのナノリボンネ ットワークの寄与やそれらの向上メカニズムを 明らかにしたいと考えている。

6. おわりに

本稿では、高分子クラウディング環境下での 酵素反応を利用した PISA により、結晶性セル ロースオリゴマーの集合構造を制御できる可 能性について紹介した。今後、クラウディング 高分子の概念を拡張することで、ハイドロゲル の力学物性や機能のさらなる制御が期待され る。最近、筆者らは、コロイド粒子の存在下に おけるセルロースの PISA によってもナノリボン ネットワークが生成されることを見出しており、 これにより力学物性の向上と制御が達成でき ている³³⁾。また、CDP によるセルロースの酵素 合成にはグルコース誘導体をプライマーとし て適用できることから 21-25)、ナノリボンに対して 様々な機能を付与できるものと予想される。以 上のことから、高分子クラウディング環境下に おけるセルロースの PISA は、新たなセルロー ス系ソフトマテリアルを構築する有用な手法と して今後の展開が大いに期待できる。また、 PISA における高分子クラウディング環境の利 用は、セルロースの酵素合成に留まることなく、 凝集しやすい高分子集合体の構造制御に展 開できる可能性も秘めている。

6. 謝辞

本研究は、最先端・次世代研究開発支援プ ログラム(GR022)、科学研究費補助 (26288056、26620174、16K14075)からの補 助を受けて行った。ここに深く感謝する。

参考文献

- B. Charleux, G. Delaittre, J. Rieger, F. D'Agosto, *Macromolecules* 2012, 45, 6753-6765.
- N. J. Warren, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 10174-10185.
- G. Delaittre, C. Dire, J. Rieger, J.-L. Putaux, B. Charleux, *Chem. Commun.* 2009, 0, 2887-2889.
- A. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan, S. P. Armes, J. Am. Chem. Soc. 2011, 133, 16581-16587.
- 5) A. Blanazs, A. J. Ryan, S. P. Armes,

Acc. Mater. Surf. Res. 2018, Vol.3 (No.1), 1-7.

Macromolecules 2012, 45, 5099-5107.

- S. Kobayashi, J. Sakamoto, S. Kimura, Prog. Polym. Sci. 2001, 26, 1525-1560.
- 7) J. Kadokawa, *Chem. Rev.* **2011**, *111*, 4308-4345.
- S. Shoda, H. Uyama, J. Kadokawa, S. Kimura, S. Kobayashi, *Chem. Rev.* 2016, *116*, 2307-2413.
- K. Tsuchiya, K. Numata, *Macromol. Biosci.* 2017, 17, 1700177.
- R. J. Ellis, *Trends Biochem. Sci.* 2001, 26, 597-604.
- 11) H.-X. Zhou, *FEBS Lett.* **2013**, *587*, 1053-1061.
- 12) S. Nakano, D. Miyoshi, N. Sugimoto, *Chem. Rev.* **2014**, *114*, 2733-2758.
- L. Breydo, K. D. Reddy, A. Piai, I. C. Felli,
 R. Pierattelli, V. N. Uversky, *Biochim. Biophys. Acta* 2014, *1844*, 346-357.
- 14) X. Zhang, M. R. Servos, J. Liu, J. Am. Chem. Soc. 2012, 134, 9910-9913.
- Y. Habibi, L. A. Lucia, O. J. Rojas, *Chem. Rev.* 2010, *110*, 3479-3500.
- 16) D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, *Anegw. Chem. Int. Ed.* 2011, 50, 5438-5466.
- R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, *Chem. Soc. Rev.* 2011, *40*, 3941-3994.
- M. Hiraishi, K. Igarashi, S. Kimura, M. Wada, M. Kitaoka, M. Samejima, *Carbohydr. Res.* 2009, 344, 2468-2473.
- T. Serizawa, M. Kato, H. Okura, T. Sawada, M. Wada, *Polym. J.* 2016, 48, 539-544.
- Y.-H. P. Zhang, L. R. Lynd, *Biotechnol. Bioeng.* 2004, 88, 797-824.
- Y. Yataka, T. Sawada, T. Serizawa, *Chem. Commun.* 2015, *51*, 12525-12528.

- 22) T. Nohara, T. Sawada, H. Tanaka, T. Serizawa, *Langmuir* 2016, 32, 12520-12526.
- 23) Y. Yataka, T. Sawada, T. Serizawa, *Langmuir* **2016**, *32*, 10120-10125.
- 24) T. Nohara, T. Sawada, H. Tanaka, T. Serizawa, J. Biomater. Sci. Polym. Ed. 2017, 28, 925-938.
- J. Wang, J. Niu, T. Sawada, Z. Shao, T. Serizawa, *Biomacromolecules*, DOI: 10.1021/acs.biomac.1027b01224.
- 26) Y. Hata, T. Kojima, T. Koizumi, H. Okura,
 T. Sakai, T. Sawada, T. Serizawa, ACS Macro Lett. 2017, 6, 165-170.
- 27) Y. Hata, T. Sawada, T. Serizawa, *Polym. J.*2017, 49, 575-581.
- 28) C. F. Lee, S. Bird, M. Shaw, L. Jean, D. J. Vaux, J. Biol. Chem. 2012, 287, 38006-38019.
- 29) J. P. Gong, *Soft Matter* **2010**, *6*, 2583-2590.
- C. Li, M. J. Rowland, Y. Shao, T. Cao, C. Chen, H. Jia, X. Zhou, Z. Yang, O. A. Scherman, D. Liu, *Adv. Mater.* 2015, *27*, 3298-3304.
- H. J. Zhang, T. L. Sun, A. K. Zhang, Y. Ikura, T. Nakajima, T. Nonoyama, T. Kurokawa, O. Ito, H. Ishitobi, J. P. Gong, *Adv. Mater.* 2016, 28, 4884-4890.
- 32) J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, *Adv. Mater.* **2003**, *15*, 1155-1158.
- 33) Y. Hata, T. Sawada, T. Sakai, T. Serizawa, *Polym. Prepr. Jpn.* **2017**, *66*, 3H03.